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Governing equations are developed for a simple capacitive heat exchanger. This type of
heat exchanger consists of hot spherical particles falling through an ascending cold gas
stream. The assumptions made in deriving the continuity, momentum and energy equa-
tions are clearly stated. The analysis yields a system of first-order, ordinary, nonlinear
equations which form a complex boundary-value problem. Part II of this report will
present the method of solution together with a comparison between the performance of
capacitive heat exchangers and conventional counter flow ones.

. Introduction

Recently published works (Refs. 1, 2 and 3) propose a new
concept in heat exchangers. The main idea is to have particles
of a “hot” fluid fall through an ascending “‘cold” fluid. The
heat exchange between the hot and cold streams takes place
inside a duct which physically contains the two flows. In most
analyses, the “cold” fluid is a gas stream. The origin of the hot
particles depends on the applications. For example, when the
particles are solid, they can originate in a packed bed; when
they are fluid droplets, they can represent the cooling of a
melt. Because the hot material consists of discrete particles of
a different phase than that of the cooling steam, these heat
exchangers have been labeled as capacitive.

Three potential advantages are claimed for capacitive heat
exchangers. First, the two streams are in direct contact with
each other. This eliminates the resistance to heat transfer
which occurs when the fluids are separated by a tube wall.
Second, the contact area between the two streams is greatly
magnified because the heat exchange takes place on the entire

surface of each of the particles. Finally, friction between the
two fluids is less than when a solid interface is present. This
promises reduced pumping power in capacitive heat
exchangers.

Numerous heat exchangers exist throughout the Deep
Space Network facilities, They range from those heat
exchangers serving the hydrostatic oil bearings of the antennas
to a cooling tower for the heating, ventilation and air condi-
tioning system. The large number of heat exchangers and their
importance in maintaining the performance of the DSN sys-
tems require that possible improvements in their efficiency be
thoroughly analyzed. As a result, a systematic investigation of
capacitive heat exchangers has been performed and the present
report gives some of the results of this investigation.

The physical phenomena that occur in capacitive heat
exchangers are quite complex. Because of this complexity, the
corresponding mathematical models are based on simplifying
assumptions. With few exceptions (Ref. 4) the assumptions are
not explicitly stated in the literature and the reader is
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presented with a set of governing equations whose origin is
dubious at best. Thus, one of the aims of this report is to
present a detailed and explicit derivation of the basic equa-
tions that govern fluid-solid processes. In addition a thermal
analysis of a capacitive heat exchanger under a given set of
assumptions will also be presented.

In the second part of the report, a numerical solution of the
equations will be presented. The numerical model allows a
sensitivity analysis to be performed for a certain type of
capacitive heat exchanger. Part II of this report will also sug-
gest future lines of research in this field.

The system to be analyzed is shown in Fig. 1. The hot
stream is made up of solid particles that fall through an
ascending cold gas. The gas forms the continuous phase while
the solid particles occupy only discrete volume elements and
form the dispersed phase. The two phases (particles and gas)
form a heterogeneous mixture with each phase occupying only
part of the volume of the mixture.! Examples of other possi-
ble heterogeneous mixtures are given in Table 1 (Ref, 6).

The particles occupy only a fraction k out of a unit volume
of the mixture. Therefore, the gas occupies the remaining
(1 - k) fraction. k is generally a function of both space and
time, k =k (x,¥,z,t), and is made up of a number of particles
per unit volume of the mixture, Np. If the volume of each
particle is denoted by V,, then

and NV, is also a function of space and time. The particles are
of a material whose density is denoted by pj,. Therefore, the
particles have a mass per unit volume (of the mixture) given by

Ap = Kpp

=NpVpPp
Ap is sometimes called the species (or phase) density of the
particles.

The continuous phase occupies (1 - k) out of a unit volume
of the mixture and it is made up of a material whose density is
denoted by p,. Therefore, the species density for the continu-
ous phase is given by A, =(1-«) p,=(1-NpVp)p,. It is
important to realize that in the analysis of multiphase flows
the species densities are the counterparts of material density in
single phase flows.

1 This is in contrast with homogeneous mixtures (e.g., solutions, alloys,
mixtures of gases) in which each component can be considered as
occupying the entire volume of the mixture (Ref. 5).
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The mathematical model of capacitive heat exchangers can
be considerably simplified by assuming that the flow and heat
transfer processes are one-dimensional and steady state. The
one-dimensional assumption proposes uniformity of the vari-
ables in any given y-plane. There is only limited experimental
evidence to back these hypotheses.? However, the advantage
of these two assumptions is that they reduce the governing set
of partial differential equations into ordinary ones. Further-
more, as the purpose of this paper is to analyze the simplest
model of capacitive heat exchangers, these assumptions
seem warranted at this juncture.

Many authors make the additional assumption that the
length scale in which the flow parameters change substantially
is much larger than the interparticle distance (Refs. 4, 5, 8).
This implies a sufficiently large number of particles in a unit
volume of the mixture. When N, is “large enough,” the
dispersed phase can be treated as a pseudofluid and its govern-
ing equations can be written in the usual continuum form. The
precise meaning of “large enough” is unclear even though it
has important consequences for the physics of capacitive heat
exchangers. For example, a very large number of particles
tends to reduce radiative heat transfer between the container
wall and the particles (Ref. 9). Furthermore, the question of
partial pressures in such mixtures is not quite clear (Ref. 4,
5, 10). Examples of systems where it is justified to assume that
Np, is “large enough” are fluidized beds and nuclear reactor
accident analysis.

In contrast, an alternative approach is to assume that the
volume fraction occupied by the particles is small and there-
fore the interactions between the particles can be neglected.
Marble (Ref. 11) points out that even in this case, continuum
relations can be written for the solid phase. For such situa-
tions, he notes that the velocities, temperatures and densities
which appear in the equations are “values averaged over a gas
volume containing several particles.” This approach has been
shown to give adequate resulis for the dynamics of dusty gases
(Refs. 11, 12, 13). Such continuum conservation equations are
especially useful when one discusses complex phenomena such
as shock waves, for example (Refs.11,14). A similar
approach, although more simplified, will be used in the next
section.

Il. Conservation Equations

The phenomena considered in this report are caused by the
interactions between the continuous and dispersed phases.

ZCounter flow experiments reported by EI’Kin and Timofeyev (Ref. 7)
indicate that at low particle loading ratios (n < 7) the distribution of
solids over the cross-sectional area is almost uniform except in the
entrance region. However, for higher loading ratios, large nonuniformi-
ties in the distribution appear both axially and in cross section.




Therefore, a mathematical analysis of the problem must
include equations regarding the conservation of mass, momen-
tum and energy of each of the phases. For both continuous
and dispersed phases the equations are written in terms of a
unit volume of the mixture. The volume fraction occupied by
the particles is assumed to be small and therefore the partial
pressure of the particles can be neglected. All particles are
assumed to be spheres of identical radius rp; this radius is
assumed to be a known quantity. Closure relations for the
problem are given by boundary conditions on the tempera-
tures and velocities.

A. Continuity

1. Dispersed phase. No sources or sinks of mass are
assumed to exist within the conduit. Therefore, the mass flow
rate is given by:

m=p,V kA

where 4 is the cross-sectional area of the conduit. With 4 a
constant and with the one-dimensional and steady-state
assumptions, the continuity equation is:

dm _ d _d =
—d—y— —-C_i};(pD Vb K) - Zg;(pDVDND VD) =0

If there is no mass transfer, ¥V, is constant and the equation
reduces to:

ah _ d _
E—dy (pDVDND)—O (1)

When the material of the particles is such that its density is
only a weak function of the temperature, then the continuity
equation can be further simplified to:

p) =0 (2

In these equations, v, and Vj, are quantities averaged over
a unit volume. of the mixture at a given location y. Therefore,
Eqgs. (1) and (2) can be written respectively as:
(3)

(op Vp Np)y, = (0 Y Np) i,

(p Np), = Gp Nplyia, (4)

2. Continuous phase. In terms of the species densities of
the gas, A, the continuity equation is:
oA

[4

ot

£V () =0 (5)

With the steady-state and one dimensional assumptions this
becomes:

0. = =06, 7] =0 ©)
Alternative forms are:
=N, V) p,v,] = 0 ™
and
[(-06,v), = [1-0p, %) s,  ®

B. Conservation of Momentum

1. Dispersed phase. In terms of the species density, Ay,
conservation of momentum per unit volume of the mixture is
given by3

DVD
N> B = S F (9)

Equation (9) implies that the acceleration of the particles is
balanced by the sum of the forces acting on them. The
possibility also exists that after an initial acceleration the
particles will reach a steady-state velocity. For this case the
momentum equation reduces to:

dYF=0 (10)

Both cases will be considered here,

The left-hand side of Eq.(9) is a product between a mass
and an acceleration. When an object accelerates through a fluid
it must overcome not only the fluid’s resistance, but also the
inertia of the fluid accelerated by the object. This is known as
the added mass effect (Ref. 16). Since this “extra” mass is due
to the fluid, it is based on the fluid’s density. Therefore, the
added mass can be neglected when pp >>p,. This condition
is met in gas-particle flows (Ref. 17) such as that discussed
here.

The right-hand side of Egs. (9) and (10) represents the sum
of forces acting on the assembly of particles in a unit volume

3A distinction is necessary between “(rate of change of momentum) per
unit volume™ and “rate of change of (momentum per unit volume).”
The former is expressed as Ap (DvD/Dt) while the latter by (D/Dt)
(Apvp)- For a discussion see Ref. 15.
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of the mixture. These forces can be classified as (a) body
forces, (b) surface forces and (c) interaction forces. The inter-
action forces can also be divided into (and lumped with) the
body and surface forces. They are kept separated here to
indicate their different origin, i.e., that they are due to the
continuous phase. The only body forces considered in this
report are due to gravitational effects and are given by

Fbody = pDKg

A possible surface force is due to electric charges which reside
on the particles (Ref. 18). Since in this report all interactions
between particles are neglected, electric forces are neglected:
electric =0

Three principal phase-interaction forces can occur in fluid-
particles flows: the Magnus force, the buoyancy force and the
drag force. The Magnus force is due to the rotation acquired
by the particles while moving through the fluid.4 Torobin and
Gauvin (Ref. 16) divide this rotation into “‘screw motion,” in
which the rotation is perpendicular to the air flow direction,
and “top spin,” in which the rotation parallels the air flow.
The latter is said to be more common and yet to have a
negligible effect on the resistance to the motion. Experiments
conducted at the Von Karman Institute for Fluid Dynamics
(Ref. 20, 21) confirm that the Magnus force can be neglected
relative to the other forces. The buoyancy force per particle is
given by p, Vp g. For an assembly of particles in a unit
volume of the mixture, the buoyancy force becomes:
buoyancy = pc K g

The most important interaction force is the drag force. This
is a product between a characteristic area of the particle, the
kinetic energy of the flow per unit volume and the drag
coefficient, C,;. The characteristic area is the surface that the
body projects to the flow; for the assembly of particles this is
Ny nrf). The kinetic energy term is given by:

1 2 _ 1 2 _1 2
E >\c vc - 5 (1 - K)'Dcvnet - E (1 —ND VD)pc vnet
where v, is the net velocity difference between the two
phases. To account for the different directions of the veloci-
ties, this can be written as

2 - - -
vnet - (vc VD) lvc VD|

*The effect has been mentioned by Newton as early as 1672 and
analyzed by Robins in 1805. Magnus worked unsuccessfully on the
problem around 1877 (Ref. 19).
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In general, the drag coefficient for an assembly of spherical
particles is very difficult to determine and quite different from
that for single spheres. The results given by Brinkman
(Ref. 22) and Tam (Ref. 23) are valid only for low Reynolds
numbers (Vg < 10). Experiments have shown (Ref. 24) that
for Ny, <300 and for low values of k, the drag coefficient is
not much different from that of single spheres. For higher
Reynolds numbers, the data compiled by Soo (Ref. 25) show a
wide variety of results. Figure 2 (Ref. 26) illustrates the varia-
tion of the drag coefficient vs the Reynolds number for
various values of k. The large uncertainty in the data has led
Rudinger (Ref. 14) to observe that “in numerical evaluations
of specific flows, at least the sensitivity of the results to
various assumptions for the drag coefficient should be
assessed.”

In this report the drag coefficient is written as 5«1 to denote
that it applies to the sum of the particles in a unit volume of
the mixture.

By adding all the terms considered in Eq.(9) and after
some algebraic manipulation, the following result is obtained

dv o, (v -v )lv-v.|
D _3 5 c ¢ D [4 D
v, I 8 C, (1-n, V) — P

1mn

For the nonaccelerating case (Eq. 10) the sum of the forces
yields an expression for the steady-state velocity:

8,80y~ p,)
_ D D ¢
(VC‘_ VD) |VC— VDI - 3pc Ed (12)

Except for the nature of the drag coefficient, Eq. (12) is
analogous to the settling velocity of single spheres (Ref. 27).

2. Continuous phase. The momentum balance for the con-
tinuous phase can be written as

In the sum of the forces term, the buoyancy and viscous
stresses can be neglected. The latter are considered to be small
when compared with the drag produced by the particles. When
k is small, it can be assumed that the partial pressure of the
particles can be neglected, and therefore the pressure gradient
term, dp/dy, refers to the gas pressure. Thus, the sum of the




forces term includes only gravitational, pressure and drag
forces. For this case the momentum balance can be written as:

C. Conservation of Energy

The general energy equation for a single phase continuum
can be written as:

QE_ - Q-. Bql i aVi N aVl_
P Dr TP T P T

(14)

The left-hand side of this equation represents the net change
of internal energy, £, within a control volume, It includes that
part of the internal energy which is added through the sys-
tem’s boundaries by material motion. The terms on the right
are, respectively, the contribution of energy sources within the
control volume, the net rate of heat addition independent of
material motion, the thermodynamic work done by pressure
forces against volume changes and finally the irreversible rate
of energy dissipation into heat due to viscosity (r;; is the
viscous part of the stress tensor).

In deriving the energy equations for capacitive heat
exchangers, it is assumed that no energy sources on sinks exist
within the fluid (oQ =0). Heat can be added to a system
independently of material motion by conduction and/or radia-
tion. The relative importance of radiative heat transfer can be
judged from the system’s characteristic temperature. At tem-
peratures above 2700°R (1500 K), radiation is the most
important mode of heat transfer (Ref. 28); below 1400°R
(830 K) radiation effects can be neglected (Ref. 29). For the
purpose of this paper, radiative heat transfer can be neglected.
Conduction between the gas and the particles is also consid-
ered negligible. Therefore, the energy equation is reduced to

DE o, a,
pj)-t——-pgx—i’ff,-j%;j (15)

In carrying out practical calculations, temperatures are
more useful than internal energy. By invoking the first and
second laws of thermodynamics, Eq. (15) can be transformed
into a temperature equation. It can be shown (Ref. 30, 31)
that two such equations are possible:

DT

D
pe —— = @+7)§ (16)

(17)

In both (16) and (17) the terms pQ and 0q,/dx; have been
discarded due to the assumptions previously made. For a
Newtonian fluid & stands for:

% avl, avk avt,
= u —_ et — —_—

o, axi ox,
where the term in brackets is equivalent to 7, in Eq. (15).
Flow velocities in capacitive heat exchangers are relatively low

and therefore, from the small Mach number assumption, &
can be considered negligible.

9

The question is which of the static pressure terms in (16)
and (17) is also small? Order-of-magnitude analysis (Ref. 31)
shows that Eq. (16) is the one to use for the small Mach
number approximation.

1. Dispersed phase. Equation (7) is valid for a single phase
continuum. For a multiphase situation an additional heat
transfer term must be included on the right side of the equa-
tion. This term represents the interphase heat transfer due to
temperature differences. Since no radiation and conduction
are considered in this model, the intérphase heat transfer is
due to convection only. Hence, under the previously stated
assumptions the energy equation for the dispersed phase is

N V. c (19)

DT _ _
Pp¥p DpD—DT_ﬁ(Tc TD)
where B is a heat transfer parameter having units of (heat)/
(time X temperature X length3). With the addition of the
steady-state and one-dimensional assumptions. Eq. (19)
becomes

dT

pDNDVDch VD 7[" = B(Tc—- TD) (20)
For convective heat transfer
B=dnrln, @n

i.e., the convective heat transfer coefficient times the surface
area of one particle times the number of particles in a unit
volume of the mixture. After some algebra the heat transfer
equation for the dispersed phase is:

ar
D _3h 0 _
Pl "D @y - r (T,-Tp) (22)
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A simpler derivation of Eq. (22) can be made through the
familiar heat exchanger equations (Ref. 32):

ATHOT

(23)

q = UM Tyor=Teorp) = =~ Myop cpHOT

where U is the overall heat transfer coefficient and .S the heat
transfer surface. The total mass of the particles within a unit
volume of the mixture is

= =, 45
wor = PoVp¥p = Pp 3 1pNp 24
The mass within this unit volume moves in a time scale given
by:

P === (25)

Therefore, the mass flow rate (per unit volume of the mixture)
is given by:
v
D

. _ 4 3
Muor = Pp 37D ND_A'JT (26)

Since only convection is considered, U = h,and AS =N p4m rIZJ.
Therefore, Eq. (23) becomes in the limit:

dTl :
D _ 3h _
pDch VD W = —rD (Tc TD) (27)

2. Continuous phase. In terms of the heat exchanger
formulas:

hos (T, (28)

or~ Teorp) =~ Meorp cpc ATcorp

After some algebra this becomes

dT, 3V, nrl \
ve —— =h|\l———— (T, -T 29
pc c pc dy 7'{7‘% ND -1 ( D c) ( )

lll. Governing System of Equations

Equations (1), (7), (11), (13), (22) and (29) express the
conservation of mass, momentum and energy for the dispersed
and continuous phases. These six equations contain 12
unknowns as follows:

pc,stND’ vc’ VDaTc’ Dsp,cp )ch,haCd
4
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Obviously, additional relations are needed. If one assumes that
the continuous phase is made up a perfect gas, then one such
additional equation is given by

P = p RT, (30)

Three other relationships must be determined experimentally:

cpc =f,(T) 31
oy = I, (Tp) (32)
pp =F3 (Tp5) (33)

Note that if p,, can be assumed to be constant, Eq. (33) is not
needed and Eq. (2) can be used in place of (1).

Relationships for 5d and 4 are more difficult to develop. It
is general practice to express these parameters as experimental
functions of the dimensionless Reynolds and Prandtl numbers.
In a biphasic flow the Reynolds number can be defined as:

_ 2pc |V(:_VDer

N Re w (34)
and the Prandtl number as:
cpc K,
N oy = e (35)

The heat transfer coefficient, # can be found from the Nusselt
number:

2hr
N, =-—2

Nu k
[4

(36)

The standard drag curve has been fitted by a number of
authors and CIift et al. (Ref. 33) give an up-to-date list of such
correlations. In this paper the following references will be
used:

From Ref. 34:
N, <10 T, =c =2+-22 37N
Re ’ ’ d d N
Re
From Ref. 35:
10<N, <2000, C, =—2" (38)
Re ’ d N, 084




From Ref. 16:
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< ol . A
2000 <N, <3000, &, = Sz

(39)

These relations are for spheres entrained by the flow, but it is
assumed that they can also be used for the counter-current
case discussed here. The sensitivity of the results to variations
in C’_d will also be analyzed in the second part of this report.

A reliable heat transfer correlation for single sphere is given
in Whitaker (Ref. 36):

0.25
Moo
= 5 0.67y 704
Ny, = 2+(04N33 +0.06 N3S) N (7;) (40)
where
NNu = ._._Q___..
4 n D* (AT)

For air Eq. (40) can be approximated by

Ny, = 2+(04N35 +006N357) (41)
because Np,=1 for air and the viscosity ratio is also about
unit. Other relationships are given by Ranz and Marshall
(Ref. 37)

= 1/3 arlj2
Ny, = 20+060NM N (42)
and Bandrowski and Kaczmarzyk (Ref. 38)
Ny, = 000114 x~0-3984 jyp.8159 (43)

Equation (42) is derived from experiments on liquid drops and
Eq. (43) from experiments on the pneumatic conveying of
small spheres. In [Eq.(43) 0.00025<x <005 and
180 < Ng, <18,000. The sensitivity of the results to the
Nusselt number correlation will also be analyzed in the second
part of this report.

One final equation is needed to complete the set:

u, = 1, (T) (44)
This last equation is needed to evaluate the additional
unknown, (1, which appears in the Reynolds number. There-
fore, the complete set includes 13 equations and 13
unknowns.

IV. Method of Solution

The equations and the unknowns are summarized in
Table 2. Boundary and/or initial conditions must be estab-
lished for these equations before any solution is attempted. In
order to do this, the hypothetical performance of a capacitive
heat exchanger is illustrated in Fig. 3. If all the parameters
were known either at ¥ =0 or at y = H, this would be a classic
initial value problem. However, because of the countercurrent
nature of the heat exchanger, only some of the parameters can
be assumed known at y =0, while the others are known only
at y = H. Therefore, this is a two-point boundary value
problem.

Initial value problems are relatively easy to solve by numeri-
cal methods. They have been used successfully to analyze
particle-gas flows in rocket nozzles (Ref. 39). Unfortunately
there are no known algorithms for solving an arbitrary two-
point boundary value problem. The so-called shooting
methods reduce the solution of a boundary value problem to
the iterative solution of an initial value problem (Refs. 40, 41,
42, 43, 44), These methods are based essentially on assuming
some of the missing information at the initial point (¥ = 0 for
example) and iterating this “trial”” solution until the end point
(y =H for example). This end point value is obtained by a
Runge-Kutta process. The value at the end point is then
compared with the actual value, and on the basis of this
comparison adjustments are made for a new trial solution. By
this process, the true end point value is bracketed by trial
solutions until a match is made. In the case of linear equations
a particularly efficient method exists.

The governing equations present the added difficulty that
some of them have derivatives implicitly defined in terms of
other derivatives. It can be shown {Appendix A) that deriva-
tive implicitness will remain in the system unless

Ny,
e constant (45)

Equation (45) implies that Vj, is a linear function of y. This
assumption, if justified, represents an important simplification
in the mathematical solution method. Results published by
ElKin and Timofeyev (Ref. 7) indicate that for loading ratios
less than 7, k (and therefore Vj) is practically constant with

yiie.,
N =N | (1+e—y-) (46)
D »=0 H

where € << 1. When Eq. (46) is valid, in terms of the notation
developed in Appendix A,
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It

_ ex‘,’|y=0 ax _
— 2 e @) =1
i
dy
MP+N (48)
dxg
= = KP+N)+ LI

CP+DH (49)

(53)

(54

(55

where none of the terms on the right-hand side contain

(50) derivatives.

Numerical techniques for solving such systems have been

E+FK (MP+N)+FLI+G (51) developed at JPL (Ref. 45). These techniques are described in

Part IT of this report in which the solution of the system of
equations is given. In Part II the results obtained for capacitive

(52) conventional counterflow heat exchangers.
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Definition of Symbols

cross-sectional area of the conduit

specific heat at constant pressure
specific heat at constant volume
drag coefficient

kinetic energy dissipation rate

internal energy

gravitational acceleration

maximum length (height) of the heat exchanger
convective heat transfer coefficient

conductive heat transfer coefficient

1 mass flow rate

number of particles per unit volume of mixture

pressure
energy sources per unit volume
heat per unit volume

gas constant

r radius
T temperature
r time

V' volume

<

velocity

y axial distance for the heat exchanger
B heat transfer parameter

n loading ratio, equal to A v D/?xcvc

k volume fraction occupied by particles

\ species density, equal to volume fraction times
material density

u coefficient of viscosity
p material density

Tl.j stress tensor

Suffixes
¢ pertains to continuous phase (gas)

D pertains to dispersed phase (particles)
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Table 1. Examples of heterogeneous mixtures

Liquid fluid phase:

Solid dispersed phase: suspension
Liquid dispersed phase: emulsion
Gaseous dispersed phase: foam

Gaseous fluid phase:

Solid dispersed phase: suspension, smoke, fluidized bed
Liquid dispersed phase: mist, fog, aerosol

Table 2. Summary of equations and unknowns

Equation type Equation Unknowns
Continuity — [(1-NpVp) o =0 N
(continuous phase) dy ( D D" VC'] D Peve
Continuity d -

(dispersed phase) dy opNp¥p) = 0 Pp:’p

dv
Momentum 4 1 dp 1 5 2 2 —

—_— e ——— e N ,C
(continuous phase) Ve dy g . (L-Np Vp) dy 2 Cd Yner D TID Pty

dv o v 0
Momentum v —2=—315(1—NV)-—C—-—”££— _c 3
(dispersed phase) D ay g d DD op ’p Pp
dT 47 Npyrd

Energy pve —C=opf—22)r _r, T, T he
(continuous phase) cecp, dy I"NDVD D ‘¢ D™ Pc
Energy v dTD _3h T -T) ¢
(dispersed phase) °p'p ch dy D ¢ D PD
State p = pcRTc -
Drag coefficient -
correlation Ca = f1 Wge e
Nusselt Nr. _ _
correlation ho=f, Vg
Viscosity correlation n = f3 (Tc) -
cpc correlation cpc = f4 (Tc) -
ch correlation c"D =fs (Tp) -
Density correlation pp = f6 (TD) -
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Appendix A

Elimination of Derivative Implicitness for the

System Equations

Consider the following symbol transformation:

x1=pc
o =V =-i1rr3
1 p 3 "D
%y T Pp
X3 =Ny
o, =g
Xy =V,
X =V
2
oy =@y
x6_Tc
x, =Ty
o, =1,
Xg =D

Then, the first seven equations from Table 2 can be written
respectively as:

dx 1

dy

dx 2

dy

dx4

dy
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) Xy =0y X3Xy @ Xp T Oy Xg¥Xy dy (1)
-x, dx x, dx
=-;g —-6-1—3 _-_%._21—.—5. (A_2)
ik T S
X, X%, (l—alxs) dy
1—
+—2-Cd (x4+x5)2-—: a, (A-3)
3 = Xy [XaTx5\2
==C,(1-ax,) (
8§ 7a 173 X, X o,
o x
-2 (1—-—‘-) (A-4)
*s X,

dy c

o
pc

%37 1

dx
7 3h
= (xg~ )

d XX, C 6 77
i a%2%s S )
dx dx dx

8 1 6
—_— = —_— —_—
@ Rx6 @ Rx1 &

dx, nof dagxg \ Gy xg)
- x1x4

(A-5)

(A-6)

(A7)

Equation (A-7) was obtained by differentiating (17) with

®.x X
1*1%4
A= s
Xg T XX,
X, -0 X X
1~ %% %,
B ey,
Xgq T OyXaXy
x
2
C ==
X3
x
2
D=2
X5
o
2
E=--2
4
1
X%, (1-ax,)
1 = 2x3
G---2—Cd(x4+xs)'x—“roz3

respect to y. Equations (A-1), (A-2), (A-3) and (A-7) define
derivatives implicitly in terms of other derivatives. Although
the nature of the system is such that this implicitness cannot
be eliminated completely, some simplification is possible as
follows. Let:

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)




=
]

Then, Eqgs. (A-1) through (A-7) can be written as

dx dx
3 4
i + [
4 dy B dy

dx3 dx s
. + ——
¢ dy D dy

dx

8
E+F 7 +G

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A23)

(A-24)

(A-25)

(A-26)

From (A-24) and (A-26)

dxg dx,
o K o +LI (A-27)
From (A-22) and (A-27)
dx, ax,
d_y_ -—E+FK—d}"' +FLI+G (A-28)
From (A-20) and (A-28)
dx, dx, dax,
—— = 4 — + BE+ BFK — + BFLI + BG
dy dy dy
(A-29)
From (A-21) and (A-23)
dx, dx,
— = —_— -
o C e DH (A-30)
Equation (A-29) can be written as
Py a4 % pEeBRLIYEBG P
dy 1- BFK dy 1- BFK dy
(A-31)
where
4 _ BE +BFLI+BG
M=1prg ™4V =" prx
Then, the two equations
dx, dx,
E_;_ =M Ti;— +N (A-31)
dx, dx
—_i = 2 -
oz c & DH (A-30)

Equations (A-30) and (A-31) indicate that derivative implicit-
ness will remain in the system unless further assumptions are
made with regard to dx4/dy.
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